

Secure and PrivaTE smArt gRid

(Grant Agreement No 787011)

D4.5 – SPEAR Smart Grid Database & Interfaces

2020-04-30

Version 1.1

Published by the SPEAR Consortium
Dissemination Level: Public

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No 787011

Ref. Ares(2020)2455137 - 08/05/2020

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 2 from 52 2020-04-30

Document Control Page

Document Details

Document Version 1.1

Document Owner European Dynamics (ED)

Contributors ED, REAL, UOWM, LUH

Work Package WP 4 – Forensic Readiness and Privacy-Preserving

Deliverable Type O

Task Task 4.5 Distributed Database & Communication Interface

Document Status Final

Dissemination Level Public

Document History

Version Author(s) Date Summary of changes

0.1 European Dynamics,
REALAIZ

2019-12-04 Table of contents

0.3 European Dynamics,
REALAIZ

2020-02-17 Ready for review by internal reviewers

0.4 European Dynamics,
REALAIZ

2020-02-23 Updated version based on internal reviewers
comments, ready to be submitted

1.0 European Dynamics,
REALAIZ

2020-03-09 Final corrections on report. Ready for submission

1.1 European Dynamics,
REALAIZ

2020-04-30 Final version addressing UOWM review
comments

Internal Review History

Reviewed By Date Summary of Comments

Antonios
Sarigiannidis (SH)

2020-02-27 Accepted with reservation. Comments to be addressed.

Igor
Kotsiuba(PIMEE)

2020-02-14 Accepted with reservation. Comments to be addressed.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 3 from 52 2020-04-30

Legal Notice

The information in this document is subject to change without notice.

The Members of the SPEAR Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The Members of the SPEAR Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 4 from 52 2020-04-30

Table of Contents
Table of Contents .. 4

List of Figures .. 5

List of Tables ... 6

Acronyms .. 7

Executive Summary .. 8

1 Introduction .. 9

1.1 Deliverable Structure ... 9

1.2 Relation to other Tasks and Deliverables ... 9

2 Analysis of SPEAR Forensic Repository Requirements .. 11

3 SPEAR Forensic Architecture .. 14

3.1 Architecture Overview ... 14

3.2 Component Model ... 14

3.2.1 Storage .. 14

3.2.2 Querying and Analytics ... 15

3.3 Interfaces Model .. 17

4 Prototype Implementation .. 18

4.1 Storage .. 18

4.1.1 Prerequisites and Installation .. 18

4.2 Querying and Analytics ... 18

4.2.1 Prerequisites and Installation .. 18

4.2.2 Repository ... 18

4.2.3 Dashboards ... 18

5 Unit Testing .. 24

6 Conclusions ... 51

References .. 52

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 5 from 52 2020-04-30

List of Figures

FIGURE 3-1: CENTRALISED LOGGING ARCHITECTURE ... 14
FIGURE 3-2: ELK ARCHITECTURE ... 15
FIGURE 4-1: LOG SPECIFIC DASHBOARD (SYSLOG DASHBOARD) .. 19
FIGURE 4-2: KIBANA DYNAMIC AND INTERACTIVE DASHBOARDS .. 19
FIGURE 4-3: KIBANA FILTER .. 20
FIGURE 4-4: KIBANA FILTER BOX .. 20
FIGURE 4-5: KIBANA FILTER BOX (INVERTING) .. 20
FIGURE 4-6: LOG SPECIFIC DASHBOARD (NETFLOW DASHBOARD) .. 21
FIGURE 4-7: NETFLOW DASHBOARD (SOURCE AND DESTINATION CATEGORISATION) .. 21
FIGURE 4-8: LOG SPECIFIC DASHBOARD (HTTPD DASHBOARD) ... 22
FIGURE 4-9: WEBSERVER DASHBOARD (SOURCE AND DESTINATION CATEGORISATION) ... 23
FIGURE 4-10: LOG SPECIFIC DASHBOARD (NETFLOW AND VARIOUS LOGGING DATA DASHBOARD) .. 23

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 6 from 52 2020-04-30

List of Tables
TABLE 2-1: COVERAGE OF SPEAR REQUIREMENTS ON FORENSIC REPOSITORY ... 11

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 7 from 52 2020-04-30

Acronyms

Acronym Description

ASN Autonomous System Numbers

ELK Elasticsearch, Logstash, and Kibana

ESM Enterprise Security Monitoring

European Dynamics ED

GDPR General Data Protection Regulation

HTTPS Hypertext Transfer Protocol Secure

IPsec Internet Protocol Security

LUKS Linux Unified Key Setup

NSM Network Security Monitoring

NTP Network Time Protocol

OSSIM Open Source Security Information and Event Management

SG Smart Grid

SIEM Security Information and Event Management

SOCs Security Operations Centres

SPEAR Secure and PrivatE smArt gRid

SPEAR-ELK SPEAR Elasticsearch, Logstash, and Kibana

SPEAR-FR SPEAR Forensics Repository

SSH Secure Shell

TLS Transport Layer Security

UTC Coordinated Universal Time

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

EVTX Windows XML EventLog

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 8 from 52 2020-04-30

Executive Summary
Given the large amounts of security event data (log files, flow-data, full content data and statistical data)
required to be processed when conducting network forensic investigations and the computational resources
needed to consume, parse and analyse them it becomes apparent that a big data storage and analysis
platform is needed. This can be a whole distributed environment, given the large amounts of data to process
and may require multiple external storage devices, to handle the large storage requirements. Commercial
platforms that are up to the task are usually too expensive to be adopted by small- and medium-sized
enterprises/organisations.

This document summarizes the logging architecture, presented in D4.2, which is able to support the smart
grid network forensics process, by a) implementing an effective and secure storage for smart grid network
forensic data and b) ingesting, processing, and analysing stored smart grid network forensic data.

Using multiple and distributed security probes in the network, will allow us to acquire smart grid network
forensic data (log files, flow-data, full content data and statistical data) that will eventually be stored in a
secured forensic evidence server, for long-term storage, namely the SPEAR Forensics Repository (SPEAR-
FR). SPEAR-FR was built on top of open-source components such as cryptsetup1,2 an open-source utility
that allows creation of encrypted volumes based on dm-crypt3 and Linux Unified Key Setup (LUKS), syslog-
ng4, softflowd5, nfdump6 and nfsen7 toolset.

Regarding querying and analytics, this document describes how ELK8 Stack, short for Elasticsearch,
Logstash, and Kibana was incorporated into SPEAR, allowing us to ingest smart grid network forensic data
stored in the SPEAR-FR, isolate and finally analyse them, thus addressing the computational resources
needed during investigations and the time delays in processing log files. This pre-configured ELK Stack
appliance of SPEAR-FR, provides all system administration and system engineering components, allowing
forensic investigators to focus on the important aspects of any forensic task, which is to apply own
intelligence and awareness when analyzing collected security event data.

1 https://gitlab.com/cryptsetup/cryptsetup
2 https://linux.die.net/man/8/cryptsetup
3 https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
4 https://github.com/balabit/syslog-ng
5 https://github.com/irino/softflowd
6 https://github.com/phaag/nfdump
7 http://nfsen.sourceforge.net/
8 https://www.elastic.co/what-is/elk-stack

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 9 from 52 2020-04-30

1 Introduction
One of the main goals of WP4 is to address the problem of secure storage of forensic data, the need of
computational resources for investigation and the time delays in processing log files, required for cyber
attacker attribution.

The logging architecture, presented in D4.2, and its implementation described in this document addresses
the above requirements by: a) safely collecting and storing smart grid network forensic data in a dedicated
remote centralized archival storage, for as long as possible, namely the SPEAR Forensics Repository
(SPEAR-FR), and b) ingesting, processing, and analysing stored smart grid network forensic data. The
latter is based on ELK Stack, a big data storage and analysis platform, that is incorporated into SPEAR and
also described in this deliverable. ELK Stack continuously gains popularity due to its scalability and open-
source components. Countless forensic teams and security operations centres (SOCs) are incorporating
ELK Stack into their production environments, as it offers them a powerful platform capable to collect and
process data from multiple data sources, while providing a set of tools to analyze collected data. Ingested
data are stored in a centralized data store that can scale as data grows.

In order to support the task of cyber attacker attribution, Network Security Monitoring (NSM) tools9 are used
to provide context, intelligence and situational awareness of the monitored network. Although security event
data can be collected and analysed, not all malicious activities can be identified even by Enterprise Security
Monitoring (ESM) tools10, including the four-layer SPEAR Security Information and Event Management
(SIEM). While automation and correlation can enhance intelligence and assist us in identifying threat
indicators, there is no replacement for human intelligence and awareness.

1.1 Deliverable Structure

The deliverable is structured in nine chapters:

 Chapter 1 is the introduction of the document.

 Chapter 2 analyses the system requirements related to secure transmission, storage and access of
forensic data.

 Chapter 3 presents the architecture and related components, by defining and describing the
decomposition of the SPEAR-FR system into components (ARCADE Component viewpoint [5]).

 Chapter 4 presents the details of the prototype implementation of both the SPEAR-FR and the ELK
Stack of SPEAR-FR including installation prerequisites, software repositories and the various
dashboards available in Kibana that can be used to support the analysis phase of the OSCAR
methodology. A full description of the OSCAR methodology can be found in [3] page 17-22.

 Chapter 5 presents the unit tests done to demonstrate requirements compliance, in line with the
SPEAR assessment methodology defined in D2.3.

 Chapter 6 draws conclusions.

1.2 Relation to other Tasks and Deliverables

The following deliverables support this deliverable:

9 https://linuxsecurity.expert/security-tools/network-security-monitoring-tools
10 https://www.dnsstuff.com/siem-tools

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 10 from 52 2020-04-30

 D2.2 System Specifications and Architecture, which defines the functional and non-functional
requirements of the SPEAR Platform, including the SPEAR Forensic Repository. It also presents
the SPEAR Platform architecture.

 D2.3 Evaluation Strategy, which provides the assessment framework for the proposed SPEAR
system, including guidelines for evaluating the security and privacy tools that will be developed
within SPEAR project.

 D4.1 Forensic Law and Regulations, which defines the forensics strategies in SPEAR and identifies
all the appropriate regulatory requirements for the SPEAR Forensic Readiness Framework
(SPEAR FRF) including those related to the collection, preservation, and use of digital evidence
sources.

 D4.2 Smart Network Forensics Specifications, which provides a smart grid network forensics
methodology that is the result of incorporating the OSCAR methodology and relevant open source
tools in order to ensure that necessary smart grid forensic information (evidence) can be collected,
stored and used as legal evidence in court. The result of applying the suggested smart grid network
forensics methodology to each SPEAR pilot, is that it allows them to become forensic ready by: a)
identifying sources of evidence, b) prioritizing their collection, c) planning their acquisition, d)
identifying how evidence will be transferred to the SPEAR-FR, including transfer protocols and
procedures, e) identifying how evidences will be made available to a forensic investigator to support
their analysis.

 D4.4, which proposes and develops a Privacy-Preserving Framework (PPF), based on the criteria
of the Article 29 Data Protection Working Party (WP29) guidelines [1], [2] and compatible with the
international standards on risk management (such as [ISO 31000]).

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 11 from 52 2020-04-30

2 Analysis of SPEAR Forensic Repository Requirements
From D2.2 the functional and non-functional requirements of the SPEAR Forensic Repository. Table 2-1
shows these requirements and how they are addressed/realised by the prototype implementation of the
SPEAR-FR which is the outcome of D4.5.

Table 2-1: Coverage of SPEAR requirements on Forensic Repository

Req ID Description How addressed

F39

Forensic Data Collection – The
SPEAR platform must collect
necessary forensic data to support
forensic investigations

SPEAR-FR supports collection of:

 Full content data using tcpdump11, after
configuring the switch “port mirroring” to
forward all network traffic to SPEAR-FR.

 Session data (router network flow statistics)
using different probes. Probes usually come
implemented in the operating system of the
routers. If this is the case, they will be
configured to export network flows to the
nfdump collector that runs on the SPEAR-FR.
However, to support scenarios (Hydro Power
Plant Scenario) where the routing equipment
cannot export network flows, the switch “port
mirroring” will be used to forward all network
traffic to the SPEAR-FR where the softflowd
software probe is installed and configured to
generate and export network flows to the
nfdump collector.

 Log files from the identified smart grid assets
(clients) that are likely to relate to the
investigation, through a syslog-ng server that
accepts messages from authorized syslog-ng
clients.

 Security events published on the message bus,
generated from the WP3 components, namely
OSSIM Server, big data analytics and visual-
aided IDS components, by creating a Kafka
consumer and subscribing to the desired
topics. Messages read are stored in a text file.

F40

Forensic Data Transmission – The
network/transport protocol used for
transferring the forensic data, it has to:
a) be secured against eavesdropping,
b) protect the integrity of the forwarded
data against manipulation or lost
messages and c) be able to deal with
network outages

Regarding transferring of network flows a secured
(Internet Protocol Security (IPsec), virtual private
network (VPN) tunnel) line between the probe and
the collector is used.

Regarding transferring of pcap files12 this is
addressed through the use of secure protocols,
such as Secure Shell (SSH) and Hypertext Transfer
Protocol Secure (HTTPS).

Regarding transferring of logs from the identified
smart grid assets (clients), that are likely to relate to

11 https://www.tcpdump.org/
12 https://fileinfo.com/extension/pcap

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 12 from 52 2020-04-30

the investigation, to the central forensics repository
(SPEAR-FR), they will be protected against
eavesdropping, by incorporating Transport Layer
Security (TLS) certificates. Using certificates to
authenticate both the syslog server and the clients
will allow for mutual authentication.

Regarding support for reliability and ability to deal
with network outages, this is addressed through
syslog-ng disk-based buffering that ensures
reliability, while syslog-ng relays ensure logs
buffering for short term, a few minutes or a few hours
long outages (depending on the log volume).

F41
Forensic Data Storage – The SPEAR
Forensic Repository must securely
store collected forensic data

The received forensic data are securely stored in an
encrypted disk, by creating a dm-crypt LUKS
container, through the cryptsetup utility, thus
preventing un-authorized disclosure of forensic
data.

The integrity of data at rest, which assures that the
data have not been tampered, can be ensured via:
a) appropriate network architecture ensuring that
the subnet where SPEAR-FR is located is
accessible only by specific users and IPs, supported
by dedicated firewall rules, b) strict file and folder
permissions (possibly backed up by Access Control
Lists), c) dedicated Host Intrusion Detection System
(HIDS) agents for File Integrity Monitoring (FIM)13.

F42
Forensic Data Access – Access to
the forensic data stored in the SPEAR-
FR should be controlled

This is addressed through a well-defined and strict
policy on how to decrypt the repository and make it
available to the forensic investigator. This should be
backed-up by a legal document (contract) that
legally binds the investigator from releasing any
private information found within the repository

F43

Availability of forensic data –
SPEAR-FR must ensure the
availability of forensic information;
otherwise unavailability of data can
become problematic, leading to overall
service unavailability or degradation
as the data owner is unable to access
forensic data.

This is addressed through regular backups of
SPEAR-FR data locations that come in the form of
cryptographically verifiable copies. At the same time
we should ensure that the restoration procedures
work as expected.

F44

Forensic Data Timeline – SPEAR
should address the problem of time
skew between servers and the
problem of timestamp format, to allow
investigators build a comprehensive
timeline

This is addressed by: a) synchronizing clocks on all
systems to Network Time Protocol (NTP) or a similar
system, b) standardizing time formats as much as
possible, c) including complete, high-precision
timestamps (full four-digit year) with time zone
information, in the form of an offset, not the name of
the time zone and d) normalizing timestamps to
Coordinated Universal Time (UTC) as early as
possible in the log chain.

13 https://cybersecurity.att.com/documentation/usm-appliance/ids-configuration/file-integrity-monitoring.htm

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 13 from 52 2020-04-30

F45

Data Protection Impact Assessment
(DPIA) – DPIA is a process designed
to describe the processing, assess the
necessity and proportionality of a
processing and to help manage the
risks to the rights and freedoms of
natural persons resulting from the
processing of personal data (by
assessing them and determining the
measures to address them)

DPIAs are important tools for accountability, as they
help controllers not only to comply with
requirements of the General Data Protection
Regulation (GDPR), but also to demonstrate that
appropriate measures have been taken to ensure
compliance with the Regulation. The DPIA
methodology followed in SPEAR is presented in
deliverable D4.4, identifying the data processing
activities, including the purpose of the processing,
types of personal data stored, data retention periods
and security measures implemented.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 14 from 52 2020-04-30

3 SPEAR Forensic Architecture
3.1 Architecture Overview

As already presented in D4.2 the logging architecture is based on the UK National Cyber Security Centre
four step program for an effective logging capability to support the network forensics task [4]. The resulting
distributed architecture is shown in Figure 3-1 and allows us to: a) safely collect and store smart grid network
forensic data in a dedicated remote centralized archival storage, for as long as possible, namely the SPEAR
Forensics Repository (SPEAR-FR) and b) ingest, process, and analyse stored smart grid network forensic
data.

Figure 3-1: Centralised Logging Architecture

As shown above, identified smart grid assets (clients) that are likely to relate to the investigation, transmit
forensic data to the forensics repository. The transport protocol is dictated by the logging source and the
service that ingests the forensic data. Transferring of network flows is done over a secured line between
the probe and the collector. Transferring of pcap files is done over secure protocols, such as SSH.
Transferring of logs from the identified clients, is done using syslog-ng and over an encrypted (TLS
Encryption) and authenticated (Mutual Authentication) channel between the clients and the server.
Moreover, syslog-ng disk-based buffering is employed to ensure reliability, while syslog-ng relays ensure
logs buffering for short term, a few minutes or a few hours long outages (depending on the log volume).

Received forensic data are securely stored in an encrypted filesystem, by creating a dm-crypt LUKS
container, though the cryptsetup open source utility.

Regarding querying and analytics, it is based on ELK Stack, it authenticates users and allows searches to
be performed on the smart grid network forensic data set.

More details about the components are described in the sections below.

3.2 Component Model

3.2.1 Storage

SPEAR-FR collects the following forensic data:

 Full content data, through tcpdump that is based on libpcap14 software library. This is achieved by
configuring the switch “port mirroring” to forward all network traffic to SPEAR-FR.

 Session data (network flow statistics), through an nfdump collector which is running on SPEAR-
FR. This is achieved by: a) configuring routers to export network flows statistics to the nfdump
collector, or b) by configuring softflowd software probe to generate and export network flows
statistics to the nfdump collector.

14 https://sourceforge.net/projects/libpcap/

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 15 from 52 2020-04-30

 Log files, through a syslog-ng server that accepts messages from authorized syslog-ng clients.

 Security events published on the message bus, through a Kafka consumer that stores read
messages on SPEAR-FR.

All received smart grid network forensic data are securely stored in an encrypted filesystem, on the SPEAR-
FR server, by creating a dm-crypt container with LUKS extension, though the cryptsetup open source utility,
thus preventing un-authorized disclosure of data.

3.2.2 Querying and Analytics

As already presented, the querying and analytics is based on ELK Stack. The following section includes a
description of the ELK Stack core components, core data sources, directories that Filebeat inputs are
crawled for new smart grid network forensic data. It also presents the importance of data normalisation and
data enrichment.

3.2.2.1 Core Components
ELK Stack is a distributed (cluster-based) easily horizontally scalable data storage, indexing, and searching
platform. We should think it as a document centric database. It is based on three primary components: a)
Elasticsearch15 component, which is a large, cluster capable, storage, full-text search and analysis engine
that is based on Apache Lucene, b) Logstash16 which is the ingest engine that reads in, adds and
manipulates the data that we are parsing, c) Kibana17 that provides a web-based dashboard for visualising
and interacting with the collected security event data. On top of that, we have log shippers, called Beats18.
These are lightweight agents (tiny pieces of code), installed on edge hosts, that are designed to ship one
specific kind of data. In SPEAR we will use Filebeat19 that is designed to ship logs and generally file
contents.

Since all security event data are located in the SPEAR-FR and since within SPEAR we perform post-
incident forensics, the following classic architecture of ELK is used.

Figure 3-2: ELK architecture20

If we need to have a full production-grade instance this will require additional technologies such as Kafka,
RabbitMQ, or Redis for resiliency nginx for security, multiple Elasticsearch nodes, multiple Logstash
instances, an archiving mechanism, an alerting plugin and a full replication for high availability.

However, as Logstash requires JVM to run, and this can cause significant memory consumption, we should
make use of Logstash monitoring API21 or the monitoring UI within Kibana.

15 https://www.elastic.co/elasticsearch/
16 https://www.elastic.co/logstash
17 https://www.elastic.co/kibana
18 https://www.elastic.co/products/beats
19 https://www.elastic.co/products/beats/filebeat
20 https://logz.io/learn/complete-guide-elk-stack/
21 https://www.elastic.co/guide/en/logstash/current/monitoring-logstash.html

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 16 from 52 2020-04-30

3.2.2.2 Data Sources
Core data sources include:

 Log data. Although the goal is to ingest/parse as many as possible log data formats, due to the
fact that there is a large variety of them, this suggests that it won’t be possible to accommodate
every single one. Since we are focusing on those log formats that are going to help us out, in typical
types of forensic analysis workflow, we focused on:

o Syslog. Here we should mention that the difficulty is not just the syslog format, which is a
semi-standardized log format, but parsing various different SSH log types, NTP logs and
Dynamic Host Configuration Protocol (DHCP)/Domain Name System (DNS) log types. ELK
Stack of SPEAR-FR solves this problem by incorporating multiple parsers, while also being
able to handle web server logs in a number of different formats, whether it comes directly
from a web or proxy server.

 NetFlow. ELK Stack of SPEAR-FR incorporates native NetFlow v5 visibility.

Regarding windows logs, such as Windows XML EventLog (EVTX) files, these are ingested/parsed by
forwarding them through a syslog pipeline, using snare22.

For all of those major data sources ELK Stack of SPEAR-FR can ingest them in two different fashions:

a) First of all live data, such as when we have a security operations use case. Live data comes in the
form of syslog transactions, Filebeat or Elastic Beat transactions.

b) Secondly and most important for our study, it supports the forensic use case. To that extend the
ELK Stack of SPEAR-FR can consume existing files. This means that security event data safely
stored in the SPEAR-FR can be consumed without the need to have a live aggregator operational
during the period of interest or during a compromise. This is not always going to be feasible,
otherwise we wouldn’t have post-incident forensics!

3.2.2.3 Loading Data
For regular logs, we should drop the files into the proper directory. This directory depends on the data that
we are feeding, hence:

 Syslog-formatted data should be placed in the /logstash/syslog/ directory. However, we have to
keep in mind that since syslog does not reflect the year of a log entry, logstash has been configured
to look for a year value in the path of the file.

 Apache logs in common, combined, or vhost-combined formats should be placed in the
/logstash/httpd/ directory

 Logs from the Passive DNS utility should be placed in the /logstash/passivedns/ directory.
 CSV files generated by the Plaso23 should be placed in the /logstash/plaso/ directory.

Once files are placed, Filebeat inputs are always looking for these locations, trying to pick up any new logs
that show up.

On the other hand, if we are looking at archived NetFlow output, we have to do some post-processing steps.
Unfortunately, NetFlow output comes in a post-incident format and as such requires parsing. To ingest
nfcapd24 NetFlow log storage format, we have developed a helper script that should be used prior to placing
them into the /logstash/nfarch/ directory.

To load pcap files like before we have to do some post-processing steps. To ingest pcap files we should
first distil the pcap to nfcapd-compatible NetFlow data. Then we should use nfdump command to create an

22 https://www.snaresolutions.com/
23 https://github.com/log2timeline/plaso
24 https://www.systutorials.com/docs/linux/man/1-nfcapd/

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 17 from 52 2020-04-30

ASCII output in a format the ELK Stack appliance can understand. The ASCII output like before should
then be placed in the /logstash/nfarch/ directory for parsing.

3.2.2.4 Data Ingest
Since data come in very different formats, it should be normalised, to allow for structured queries. This
comes in the form of a standardised naming scheme across all of our log sources. A proposed field name
standardisation is presented here25. The fact that we can now query all of our data sources with the same
field, provides a consistent use case that in turns enables flexible dashboards and easier queries.

A big benefit that Logstash provides is data enrichment26. Therefore, for each IP address the ELK Stack
appliance adds GeoIP data as well as Autonomous System Numbers (ASN) data27, or network owners,
from local databases. Therefore, we are not doing any off system look ups. ELK Stack appliance also
supports dynamic field creation that adds an extract value to the data, by being able to query in a slightly
different way. All of these enrichments are done at run/query time, which means that they do not take extra
space in the databases. For example, we can have a new dynamic field called total_bytes that is the result
of source_bytes + destination_bytes.

Document tagging is another Logstash feature, allowing each record in the ElasticSearch database, which
is called document, to receive tags of any numbers (an array of full tags). These tags are helpful because
they can tell us how that record was parsed, enabling troubleshooting, load times categorization and easy
filtering. Basically, it traces its way through the parsing pipeline.

3.3 Interfaces Model

Since SPEAR-FR does not interact with other SPEAR components, there are no interfaces to present.
However, if components need to communicate with the ELK Stack components of SPEAR-FR, relevant
APIs should be used. Their documentation is available below:

a) Elasticsearch REST-API (https://www.elastic.co/guide/en/elasticsearch/reference/6.7/release-
notes-6.7.2.html)

b) Kibana REST-API (https://www.elastic.co/guide/en/kibana/6.7/api.html)
c) Logstash REST-API (https://www.elastic.co/guide/en/logstash/6.7/monitoring.html)

25 https://www.elastic.co/guide/en/ecs/current/ecs-guidelines.html
26 https://www.elastic.co/guide/en/elasticsearch/reference/master/ingest-enriching-data.html
27 https://www.elastic.co/guide/en/logstash/current/lookup-enrichment.html

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 18 from 52 2020-04-30

4 Prototype Implementation
4.1 Storage

4.1.1 Prerequisites and Installation

Regarding the storage of forensic data the hardware and operating system prerequisites are:

 A 2-core processor
 4GB RAM Memory
 500GB of disk space or more

The software prerequisites include:

 Centos 7 Operative System (OS)
 self-signed certificates to be able to encrypt syslog data in transit using TLS encryption
 softflowd
 syslog-ng
 nfdump
 Kafka consumer

Installation and configuration scripts are provided in the unit testing section.

4.2 Querying and Analytics

4.2.1 Prerequisites and Installation

To support querying and analytics the hardware and operating system prerequisites are:

 Centos 7 Operative System
 At least a 4-core processor
 16GB RAM Memory

However, if we are to deploy the ELK Stack of SPEAR-FR in a production environment we should choose
a machine with 64GB of RAM, a couple of Terabytes HDD and 24-cores that eventually should allow us to
reach larger numbers (reports indicate at least half-a-billion records). So it becomes apparent that in terms
of scalability it all depends on the available infrastructure. Of course there is always the possibility to have
a cluster allowing us to reach even higher numbers.

4.2.2 Repository

The pre-configured ELK Stack appliance of SPEAR-FR can be found at a private github repository managed
by European Dynamics: https://github.com/european-dynamics-rnd/spear-elk.

4.2.3 Dashboards

To support the analysis phase of the OSCAR methodology presented in D4.2 we use Kibana, that allows
to visualize, search, monitor and interact with our data across the Elastic Stack.

4.2.3.1 Syslog Dashboard
Below we present the syslog dashboard that allows us to visualise and search into our syslog data and
enable us to drill down into details. On top, we see the number of events per time unit and this is dynamic.
Of course, we can zoom in any time of interest. In the second row the two pie graphs, since we are parsing

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 19 from 52 2020-04-30

syslog data, they contain the source host name, as well as the program and those are going to be identified
based on what the syslog log event is (two fields standardised in the syslog interface).

Figure 4-1: Log specific dashboard (syslog dashboard)

As already mentioned dashboards are interactive and Elastic provides means to interact with them. As we
hover the mouse over those slices of the pie charts, it will actually provide immediate feedback on what the
content is and how much of it there is. Therefore, in the figure below, we see that hovering over the “su”
log source program, we have little over six thousand entries, coming from that log source, which is almost
9%.

Figure 4-2: Kibana Dynamic and Interactive Dashboards

If we now click on that slice all the way at the very top of the dashboard, it is going to actually build one of
these filter boxes. It is going then to filter content, thus providing us with a quick way to filter through millions
of entries.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 20 from 52 2020-04-30

Figure 4-3: Kibana filter

However, hovering over the filter expression, it now presents 5 different icons, as shown below. The check
box allows to enable/disable that filter, the pin icon determines whether this filter will last across all different
dashboards, the minus magnifying glass is going to invert the filter, the trash icon allows to delete the filter
and the edit icon, allows to edit/tweak the filter expression.

Figure 4-4: Kibana filter box

Inverting a filter is a helpful function as it allows to partition out what we have just been looking at and look
at everything else.

Figure 4-5: Kibana filter box (inverting)

One of the great things about Elastic is the way it creates the mapping in its storage engines, by segmenting
up or tokenizing the strings. This means that any word can be searched easily, which can be a really
powerful tool during forensic investigations. Instead of typing a filter, we can simply type in strings and take
advantage of Kibana data discovery functions. Applying this free form search will eventually return all
different type of log entries that contain that specific string. So not only we can narrow down our scope,
without using a filter, since now we are using a search string, but Kibana can visualize and highlight where
it was found. This is really convenient during forensic investigations because it allows to identify, based on
broad searches, which records are in scope and then explore these records, see what they contain and
see which fields contain the string that we are interested in. This is useful in cases where we are not sure
what we are looking at or when we are starting with a weak lead. Simply typing in the weak lead and without
having to know the structure of the data, we will be able to search for that string in any field possible. Here
we can either use Kibana or Lucene syntax.

4.2.3.2 NetFlow Dashboard
The next figure presents the dashboard from our NetFlow data, which as already mentioned in D4.2, is a
statistical summary (no content, since we are not loading pcap data). In this figure, we can see that we are
loading a short period of time worth of data and specifically we are loading 5 days’ worth of NetFlow that
amounts to about 30Gbytes of traffic.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 21 from 52 2020-04-30

Figure 4-6: Log specific dashboard (NetFlow dashboard)

The summaries and the different colour in these graphs, represent the different protocols and in our case
purple is ICMP, green is UDP and blue is TCP. Moreover, because the y-axis visualisation is in logarithmic
scale, we can get a clear idea of where even the small data points are. So as we see, we can visualise the
ICMP part that does not dwarf by the large data transactions of the TCP part.

Scrolling down, we see the source and destination categories as the following figures presents. On the left,
we see source and destination IP addresses allowing to see who are the consumers and generators in
terms of traffic. To the right is source and destination ports going from L3 addressing to L4. In the middle,
we have got the maps that provides us with an idea of the geolocation of the source and destination of the
traffic and is presented in a heat-map form. This is incredibly helpful when we want to get an idea, a broad
understanding of traffic patterns. However, we should be aware that IP-based geolocation is not perfect,
however, it is going to be enough for us to get some broad trends.

Figure 4-7: NetFlow dashboard (source and destination categorisation)

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 22 from 52 2020-04-30

4.2.3.3 Webserver Logs (HTTPD) Dashboard
The next figure presents the dashboard from our webserver logs. On the top line, we see the request
methods, while the bottom line shows the response codes, which like the previous dashboards are fully
interactive and searchable. These are helpful during forensic investigations as it allows us to visualize
patterns of traffic and anomalies. If we see something that does not match the expected patterns, then it
becomes an investigative anomaly that we should try and figure out. The ASN numbers are also displayed,
identifying where that traffic is coming from.

Figure 4-8: Log specific dashboard (HTTPD dashboard)

Scrolling down we visualise the same information based on source host (vhost) name, as well as source IP
address geolocation, followed by user agents which can be invaluable for trying to characterize behaviour
in our environment, if this is available. If we are looking at https logs that are being generated from our own
server, it is going to be helpful. If we are looking at traffic coming from a proxy server, we are not going to
get that information from an encrypted data flow. But if we are intercepting with a TLS proxy the ELK Stack
of SPEAR-FR will be able to handle that.

At the very bottom like the previous dashboards we have got the discovery panel, which allows us a full
exploration of all these fields that we might be interested in.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 23 from 52 2020-04-30

Figure 4-9: Webserver dashboard (source and destination categorisation)

4.2.3.4 Login Activity Dashboard
The next figure presents a dashboard that integrates NetFlow and various different types of logging data.
This dashboard correlates NetFlow data along the top row (same graphs we saw before) based on the log
events themselves. So the second entry reflects the fact that we have a timeline based on syslog data and
this includes, in this specific example, just SSH login records, that as shown it includes almost 800
unsuccessful logins! This could indicate some kind of a brute force attack, which is not uncommon within
internet connected machines, but at least it provides us with the ability to see any kind of ratios between
what was or what was not present, in terms of the login results success or failure. The source map allows
to visualize those events themselves.

Figure 4-10: Log specific dashboard (NetFlow and various logging data dashboard)

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 24 from 52 2020-04-30

5 Unit Testing
According to the assessment methodology defined in D2.3, section 4.1.1 states that: “Unit test plans will be
developed during the implementation phase of the project. All individual units of the SPEAR solution will be
tested to determine if they are operational and if they meet their specifications.”

In this section the unit test cases for the developed components, are defined, executed and their results
presented. They include references to the system functional and non-functional requirements as defined in
D2.2.

Test Case ID FR_01 Component softflowd

Description
Install and configure softflowd, on a pilot machine, to generate and export network
flows

Req ID F39 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) Centos 7 server on pilot premises

Test steps

1
Ensure that we have a few utilities installed on the server to satisfy the dependencies
yum install libtool automake autoconf python-devel libpcap-devel

2

Copy the softflowd compressed source files:
cd /root/

wget https://storage.googleapis.com/google-code-archive-
downloads/v2/code.google.com/softflowd/softflowd-0.9.9.tar.gz

Decompress them
tar -zxvf softflowd-0.9.9.tar.gz

3

Run the configuration script that checks whether we have the relevant programs dependencies
in place and where those binaries are on our system.

cd softflowd-0.9.9
./configure

4

Run the make utility to build a binary executable ready to install
make

5 Install the application

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 25 from 52 2020-04-30

make install

Input data

List Network Interfaces

ip link show

Test whether we can see relevant messages
softflowd -D -v 9 -i eth0 -n 10.250.100.16:9995 -T full

In the above example, the switches used are explained:

-D Debug mode, which bring this to the foreground

-v 9 Version 9 of NetFlow

-i eth0 The interface to listen on number

-n
10.250.100.16:9995

The target host IP address and port number of the
collector/analyser

-T full All protocols

However, we should run softflowd in the background by removing the –D switch

Result

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 26 from 52 2020-04-30

Test Case ID FR_02 Component SPEAR-FR

Description
Enable softflowd application so that we can stop/start and restart it like a service and
have this enabled after the server has had a reboot

Req ID F39 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) Installed and configured softflowd probe on server at pilot premises.

Test steps

1

Create file /etc/init.d/softflowd and add the following entries to it:
#! /bin/bash

chkconfig: 2345 80 30

description: SoftFlow Deamon Service

BEGIN INIT INFO

Provides: SOFTFLOWD

Short-Description: Start/Stop/Restart SOFTFLOWD TCP Flow Probe

END INIT INFO

SOFTFLOWD This init.d script is used to start SOFTFLOWD.

SOFTFLOWD=/usr/local/sbin/softflowd

VERSION="9"

INTERFACE="eth0"

COLLECTOR="10.250.100.16"

CPORT="9995"

PID_FILE="/var/run/softflowd.pid"

OPTIONS="-v ${VERSION} -i ${INTERFACE} -n ${COLLECTOR}:${CPORT} -T full -p
${PID_FILE}"

start_SOFTFLOWD() {

${SOFTFLOWD} ${OPTIONS} > /dev/null &

return 1

}

stop_SOFTFLOWD() {

if [-f ${PID_FILE}]; then

kill `cat ${PID_FILE}` 2>1 /dev/null

\rm ${PID_FILE}

fi

}

########

case "$1" in

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 27 from 52 2020-04-30

start)

echo -n "Starting SOFTFLOWD"

start_SOFTFLOWD;

echo " Done."

;;

stop)

echo -n "Stopping SOFTFLOWD"

stop_SOFTFLOWD;

echo " Done."

;;

restart)

echo -n "Restarting SOFTFLOWD"

stop_SOFTFLOWD;

sleep 1

start_SOFTFLOWD;

echo " Done."

;;

*)

echo "Usage: /etc/init.d/SOFTFLOWD {start|stop|restart}"

exit 1

esac

exit 0

2
Change the file permissions:
chmod 755 /etc/init.d/softflowd

3
Make the script a loadable initialisation script as part of the “service <application name> start”
function by adding this with the chkconfig command:
chkconfig --add softflowd

Input data
Start the service:
systemctl start softflowd.service

Result

Check service status
systemctl status softflowd.service

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 28 from 52 2020-04-30

Test Case ID FR_03 Component SPEAR-FR

Description SPEAR-FR can collect exported network flows

Req ID F39 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)
On pilot either router with NetFlow export capability of installed softflowd, exporting
flows to SPEAR-FR VM (in the ED test environment IP is 10.250.100.16).

Test steps

1
Install rrdtool-devel
yum install rrdtool-devel

2

Download the latest code from github
cd /opt

wget http://downloads.sourceforge.net/project/nfdump/stable/nfdump-
1.6.13/nfdump-1.6.13.tar.gz

3

Compile nfdump while in the "/opt/nfdump-1.6.13" directory:
tar -zxvf nfdump-1.6.13.tar.gz

cd /opt/nfdump-1.6.13

./configure --prefix=/opt/nfdump --enable-nfprofile --enable-nftrack --
enable-sflow

autoreconf

make

sudo make install

Input data
1. # ps axo command | grep '[n]fcapd'
2. # lsof -Pni | grep nfcapd
3. # tcpdump -n –v dst port 9995

Result

1. # /opt/nfdump/bin/nfcapd -w -D -p 9030 -u netflow -g apache -B
200000 -S 1 -P /data/nfsen/var/run/p9030.pid -z -I rnd-web-
softflowd -l /data/nfsen/profiles-data/live/rnd-web-softflowd

2. # nfcapd 14790 netflow 4u IPv4 1626345 0t0 UDP *:9030
3. listening on eth0, link-type EN10MB (Ethernet), capture size 65535

14:14:01.426775 IP 10.250.73.28.35829 > 10.250.100.16.iop: UDP,
length 312

14:15:01.185508 IP 10.250.73.28.35829 > 10.250.100.16.iop: UDP,
length 408

14:16:01.944233 IP 10.250.73.28.35829 > 10.250.100.16.iop: UDP,
length 168

Test Case Result Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 29 from 52 2020-04-30

Test Case ID FR_04 Component SPEAR-FR

Description Install and configure nfsen. This is an optional test visualising collected netflows

Req ID F39 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)

On pilot either router with NetFlow export capability of installed softflowd, exporting
flows to SPEAR-FR VM (in the ED test environment IP is 10.250.100.16).

On SPEAR-FR server installed nfdump toolset

Test steps

1

Install the following packages for CentOS 7
yum install -y httpd php wget gcc make rrdtool-devel rrdtool-perl perl-
MailTools perl-Socket6 flex byacc perl-Sys-Syslog perl-Data-Dumper

yum install -y autoconf automake apache php perl-MailTools rrdtool-perl perl-
Socket6 perl-Sys-Syslog.x86_64 policycoreutils-python tcpdump

echo "date.timezone = Europe/Belgrade " > /etc/php.d/timezone.ini yum update -
y

2

Set user for web interface and dump files
useradd netflow

usermod -a -G apache netflow

3

Create required folders
mkdir -p /data/nfsen

mkdir –p /var/www/html/nfsen

4

Download the latest code from github
cd /opt

wget https://sourceforge.net/projects/nfsen/files/stable/nfsen-1.3.8/nfsen-
1.3.8.tar.gz

tar -zxvf nfsen-1.3.8.tar.gz

cd nfsen-1.3.8

5

Edit configuration file to make sure all variables are set correctly:
cd etc

cp nfsen-dist.conf nfsen.conf

vi nfsen.conf

$BASEDIR= "/data/nfsen";

$HTMLDIR = "/var/www/html/nfsen";

$PREFIX = '/opt/nfdump/bin';

$WWWUSER = "apache";

$WWWGROUP = "apache";

6

Add our host to the file to allow for collection, my %sources looks like this:

In the example below we have two valid sources with different ports and different colors.
%sources = (

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 30 from 52 2020-04-30

 'rnd-server-softflowd' => { 'port' => '9030', 'col' => '#0000ff', 'type'
=> 'netflow' },

);

7

Run the perl installation script to install nfsen
cd ..

./install.pl etc/nfsen.conf

Press enter to accept the default path.
Perl to use: [/usr/bin/perl]

Ignore any Errors since we did not configure any flows at this point.

8

Optionally we can make it start at boot:
vi /etc/init.d/nfsen

And add this to the file:
#!/bin/bash

#! #chkconfig: - 50 50

#description: nfsen

DAEMON=/data/nfsen/bin/nfsen

case "$1" in

start)

$DAEMON start

;;

stop)

$DAEMON stop

;; status)

$DAEMON status

;;

restart)

$DAEMON stop

sleep 1

$DAEMON start

;;

*)

echo "Usage: $0 {start|stop|status|restart}"

exit 1

;;

esac

exit 0

then make script executable
chmod +x /etc/init.d/nfsen

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 31 from 52 2020-04-30

Start the nfsen deamon:
/etc/init.d/./nfsen start

Input
data

Once we have configured our NetFlow source (see previous use cases), we should start
seeing data in ~5-10 minutes.

Navigate to http://spear-fr-server.eurodyn.com/nfsen/nfsen.php

Result

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 32 from 52 2020-04-30

Test Case ID FR_05 Component SPEAR-FR

Description SPEAR-FR can collect log files from the identified smart grid assets (clients).

Req ID F39 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) SPEAR-FR and SPEAR-PPF (client) Centos 7 servers

Test steps

1

Enable and install the Extra Packages for Enterprise Linux (EPEL) repository, since it contains
many useful packages, which are not included in RHEL. A few dependencies of syslog-ng are
available in this repo.
wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

rpm -Uvh epel-release-latest-7.noarch.rpm

2

Install syslog-ng both on SPEAR-FR and the identified smart grid assets/servers
cd /etc/yum.repos.d/

wget https://copr.fedorainfracloud.org/coprs/czanik/syslog-ng324/repo/epel-
7/czanik-syslog-ng324-epel-7.repo

yum install syslog-ng

systemctl enable syslog-ng

3

Configure Syslog-ng on SPEAR-FR:

 SSH to SPEAR-FR server
 Make a copy of the syslog-ng.conf to /etc/syslog-ng/conf.d

cd /etc/syslog-ng

cp /etc/syslog-ng/syslog-ng.conf /etc/syslog-ng/conf.d/spear.conf

 Adapt the spear syslog-ng “spear.conf” configuration:
source spear_ppf_source {

 network(

 ip(0.0.0.0)

 port(6514)

);

};

log {

 source(spear_ppf_source);

 destination(d_spear_ppf_camunda);

};

destination d_spear_ppf_camunda {

 file("/var/log/spear/spear_ppf");

};

 Update /etc/syslog-ng/syslog-ng.conf to include spear.conf
@include "/etc/syslog-ng/conf.d/*.conf"

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 33 from 52 2020-04-30

Configure Syslog-ng on client (SPEAR-PPF):

 SSH to client (SPEAR-PPF server)
 Make a copy of the syslog-ng.conf to /etc/syslog-ng/conf.d

cd /etc/syslog-ng

cp /etc/syslog-ng/syslog-ng.conf /etc/syslog-ng/conf.d/spear.conf

 Adapt the spear syslog-ng configuration:
destination spear_fr_destination {
 network("spear-fr-server.eurodyn.com"
 port(6514)
);
};

log {
 source(s_spear_ppf_access_logs);
 destination(spear_fr_destination);
};

source s_spear_ppf_access_logs {
 file("/var/log/httpd/spear-ppf-access.log" follow-freq(1));
};

 Update /etc/syslog-ng/syslog-ng.conf to include spear.conf
@include "/etc/syslog-ng/conf.d/*.conf"

Input data

Start syslog-ng on both the SPEAR-FR server and the client (SPEAR-PPF).
systemctl start syslog-ng

Access either the PIA or the “Forensic Readiness Process” applications

Result

Navigate on the SPEAR_FR server to
cd /var/log/spear

We should see a new file, namely spear_ppf. If we open it we should see all log messages
from the "/var/log/httpd/spear-ppf-access.log” location of the client

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 34 from 52 2020-04-30

Test Case ID FR_06 Component SPEAR-FR

Description SPEAR-FR can collect security events published on the message bus

Req ID F39 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) SPEAR-FR Centos 7 server

Test steps

1

Import the required libraries:
from kafka import KafkaConsumer

import os, sys

import configparser

2

Create the Kafka Consumer: Kafka-python library (pip install Kafka-python) is used. For the
creation of the Consumer, the following items are required:

 The CA certificate
 The consumer key
 The consumer certificate
 The password of the certificate

configparser library in Python can be used to set the mentioned items.

cafile = config['DEFAULT']['kafka_ca_file']

consumer_certfile = config['DEFAULT']['kafka_cert_file']

consumer_keyfile = config['DEFAULT']['kafka_key_file']

consumer_pass = config['DEFAULT']['kafka_pass']

producer = KafkaConsumer(group_id='spear_consumer',

bootstrap_servers='[{0}:{1}]'.format('kafka', 9092),

security_protocol='SSL',

ssl_ciphers='ALL',

ssl_check_hostname=False,

ssl_cafile=cafile,

ssl_certfile=consumer_certfile,

ssl_keyfile=consumer_keyfile,

ssl_password=consumer_pass)

In order to use configparser , a file called “config.ini” is needed:

[DEFAULT]

kafka_ca_file=/<path_of_certificates>/CARoot.pem

kafka_cert_file=/<path_of_certificates>/BDAC_consumer-certificate.pem

kafka_key_file= /<path_of_certificates>/BDAC_consumer-key.pem

kafka_pass= <password>

Note: Replace the marked parts with the path of your certificates

3
Subscribe the consumer to desired topics :
consumer.subscribe(['schneider_operational_topic'])

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 35 from 52 2020-04-30

Note: The list of the available topics is

 Topic name Description

Streaming
Bus

spear_topic Network packets captured

flows_topic Netflow data

vets_operational_topic
Operational data from hydro power use
case

schneider_operational_topic Operational data from substation use case

spear_PPC_Operational_topic
Operational data from combined IAN and
HAN use case

certh_operational_battery_topic
Operational data about battery from smart
house use case

certh_operational_electricity1stfloor_topic
Operational data about 1st floor electricity
from smart house use case

certh_operational_electricityGRfloor_topic
Operational data about ground floor
electricity from smart house use case

certh_operational_electricityhome_topic
Operational data about electricity from smart
house use case

certh_operational_pv_topic
Operational data about PV from smart
house use case

4

Read the messages and do the necessary process. For instance, here there is an example of
reading 50 messages and writing them to a text file.

 i = 0

 for message in consumer:

text_file = open('schneider_operational_kafka.txt' +
str(message.partition), "a+")

text_file.write(str(message) + '\n')

i += 1

if i == 50:

We stop when we read 50 messages

 Break

5
Close the consumer
consumer.close()

Input data Access the text file schneider_operational_kafka.txt

Result We should see inside all messages stored

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 36 from 52 2020-04-30

Test Case ID FR_07 Component SPEAR-FR

Description
For data in transit TLS should encrypt syslog messages, exchanged between
the syslog server and the clients.

Req ID F40 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)

SPEAR-FR and SPEAR-PPF (client) Centos 7 servers and TLS certificates

(spear-fr-server_cacert.pem, spear-fr-server_serverkey.pem, spear-fr-
server_cacert.pem, spear-ppf-server_clientcert.pem, spear-ppf-
server_clientkey.pem)

Test steps

1

Configure Syslog-ng on SPEAR-FR:

 SSH to spear-fr server
 Create directories cert.d and ca.d under /etc/syslog-ng

cd /etc/syslog-ng

mkdir cert.d ca.d

 Copy spear-fr-server_servercert.pem and spear-fr-server_serverkey.pem to cert.d.
cp /root/SPEAR_FR_CA/spear-fr-server_servercert.pem cert.d/

cp /root/SPEAR_FR_CA/spear-fr-server_serverkey.pem cert.d/

 Copy spear-fr-server_cacert.pem to ca.d
cp /root/SPEAR_FR_CA/spear-fr-server_cacert.pem ca.d/

 issue the following command on the certificate:
cd ca.d/

openssl x509 -noout -hash -in spear-fr-server_cacert.pem

 The result is a hash (for example f3734642), a series of alphanumeric characters based
on the Distinguished Name of the certificate.

 Create a symbolic link to the certificate that uses the hash returned by the previous
command and the .0 suffix.
ln -s spear-fr-server_cacert.pem f3734642.0

 Make a copy of the syslog-ng.conf to /etc/syslog-ng/conf.d
cp /etc/syslog-ng/syslog-ng.conf /etc/syslog-ng/conf.d/spear.conf

 Adapt the spear syslog-ng configuration:
source spear_ppf_tls_source {

 network(

 ip(0.0.0.0)

 port(6514)

 transport("tls")

 tls(

 key_file("/etc/syslog-ng/cert.d/spear-fr-
server_serverkey.pem")

 cert_file("/etc/syslog-ng/cert.d/spear-fr-
server_servercert.pem")

 ca_dir("/etc/syslog-ng/ca.d")

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 37 from 52 2020-04-30

)

);

};

log {

 source(spear_ppf_tls_source);

 destination(d_spear_ppf_camunda);

};

destination d_spear_ppf_camunda {

 file("/var/log/spear/spear_ppf");

};

 Update /etc/syslog-ng/syslog-ng.conf to include spear.conf
@include "/etc/syslog-ng/conf.d/*.conf"

Configure Syslog-ng on client (for example SPEAR-PPF):

 SSH to client (SPEAR-PPF server)
 Create directories cert.d and ca.d under /etc/syslog-ng

cd /etc/syslog-ng

mkdir cert.d ca.d

 Copy spear-ppf-server_clientcert.pem and spear-ppf-server_clientkey.pem from the
SPEAR-FR server to cert.d on the client server.
scp spear-ppf-server_clientkey.pem root@spear-ppf-server:/etc/syslog-
ng/cert.d/

scp spear-ppf-server_clientcert.pem root@spear-ppf-
server:/etc/syslog-ng/cert.d/

 Copy spear-fr-server_cacert.pem from the SPEAR-FR server to ca.d on the client server
scp spear-fr-server_cacert.pem root@spear-ppf-server:/etc/syslog-
ng/ca.d/

 issue the following command on the certificate (on the client VM):
cd ca.d/

openssl x509 -noout -hash -in spear-fr-server_cacert.pem

 The result is a hash (for example f3734642), a series of alphanumeric characters based
on the Distinguished Name of the certificate.

 Create a symbolic link to the certificate that uses the hash returned by the previous
command and the .0 suffix.
ln -s spear-fr-server_cacert.pem f3734642.0

 Make a copy of the syslog-ng.conf to /etc/syslog-ng/conf.d
cp /etc/syslog-ng/syslog-ng.conf /etc/syslog-ng/conf.d/spear.conf

 Adapt the spear syslog-ng configuration:
destination spear_fr_tls_destination {
 network("spear-fr-server.eurodyn.com"
 port(6514)
 transport("tls")
 tls(
 ca_dir("etc/syslog-ng/ca.d")

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 38 from 52 2020-04-30

 key_file("/etc/syslog-ng/cert.d/spear-ppf-
server_clientkey.pem")
 cert_file("/etc/syslog-ng/cert.d/spear-ppf-
server_clientcert.pem"))
);
};

log {
 source(s_spear_ppf_access_logs);
 destination(spear_fr_tls_destination);
};

source s_spear_ppf_access_logs {
 file("/var/log/httpd/spear-ppf-access.log" follow-freq(1));
};

 Update /etc/syslog-ng/syslog-ng.conf to include spear.conf
@include "/etc/syslog-ng/conf.d/*.conf"

Input data

Re/start syslog-ng on both the SPEAR-FR server and the client (SPEAR-PPF).
systemctl restart syslog-ng

Access either the PIA or the “Forensic Readiness Process” applications

Result

Navigate on the SPEAR_FR server to
cd /var/log/spear

On the server side, tail the file, where logs are arriving ("/var/log/spear/spear_ppf"). We
should see logs from the client (spear-ppf)

Test Case Result Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 39 from 52 2020-04-30

Test Case ID FR_08 Component SPEAR-FR

Description Provide support for reliability and ability to deal with network outages.

Req ID F40 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)

SPEAR-FR and SPEAR-PPF (client) Centos 7 servers and TLS certificates

(spear-fr-server_cacert.pem, spear-fr-server_serverkey.pem, spear-fr-
server_cacert.pem, spear-ppf-server_clientcert.pem, spear-ppf-
server_clientkey.pem)

Test steps

1

Update Syslog-ng on client (for example SPEAR-PPF):

 SSH to spear-fr server
 Adapt the spear syslog-ng configuration:

destination spear_fr_tls_destination {
 network("spear-fr-server.eurodyn.com"
 port(6514)

 disk-buffer(
 mem-buf-size(10000)
 disk-buf-size(2000000)
 reliable(yes)
 dir("/tmp/disk-buffer")
)

 transport("tls")
 tls(
 ca_dir("etc/syslog-ng/ca.d")
 key_file("/etc/syslog-ng/cert.d/spear-ppf-
server_clientkey.pem")
 cert_file("/etc/syslog-ng/cert.d/spear-ppf-
server_clientcert.pem"))
);
};

Input data

Re/start syslog-ng on both the SPEAR-FR server and the client (SPEAR-
PPF).
systemctl restart syslog-ng

Disable network interface of SPEAR-FR to emulate a network outage. In the
meantime access the PIA application

After 2-3 minutes enable network interface of SPEAR-FR

Result

Navigate on the SPEAR_FR server to
cd /var/log/spear

On the server side, tail the file, where logs are arriving
("/var/log/spear/spear_ppf"). We should see logs from the client (spear-ppf)

Test Case Result Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 40 from 52 2020-04-30

Test Case ID FR_09 Component SPEAR-FR

Description SPEAR-FR must securely store collected forensic data in an encrypted disk.

Req ID F41 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) SPEAR-FR Centos 7 server

Test steps

1

Create a file which will act as our storage device, using the ubiquitous dd command and the
/dev/random pseudo-device. This way we will write random data, which should mimic the
encrypted data that will actually be written to it:

dd if=/dev/urandom of=/root/spear-fr bs=1M count=512
chown -R root:root /root/spear-fr
chmod -R 700 /root/spear-fr

2

Create a LUKS partition within the file (LUKS Container).

NOTE: We need to provide a password that will be needed to decrypt the data.

cryptsetup -y luksFormat /root/spear-fr

If we check out the file now, we can see that it is now known as a LUKS encrypted file:
file /root/spear-fr
/root/spear-fr: LUKS encrypted file, ver 1 [aes, xts-plain64, sha256] UUID:
9f2ba4e7-5875-470f-84ac-4c82078799f0

3

Open the container.

NOTE: We must provide the password we set before for the file, which is needed to decrypt it.

cryptsetup luksOpen /root/spear-fr spear-fr-volume

The above command will open the LUKS device, and maps it to “spear-fr-volume“, by creating a
file at /dev/mapper/spear-fr-volume. This basically opens the file as a local loopback device so
that the rest of the system can now handle the file as if it were a real device.

4

Create and mount the file system:

mkfs.ext4 -j /dev/mapper/spear-fr-volume

The above command will create a filesystem written on top of our LUKS container that is
contained in our file.

5

Logically to mount the device:

 Create mount location:
mkdir /mnt/spear-fr-files

 Mount filesystem
mount /dev/mapper/spear-fr-volume /mnt/spear-fr-files/

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 41 from 52 2020-04-30

 Give read, write permissions only to root:
chown -R root:root /mnt/spear-fr-files/
chmod -R 700 /mnt/spear-fr-files/

Test whether can see the mounted filesystem as part of our available filesystems:
df –h

should return:
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/spear-fr-volume 486M 2.3M 459M 1% /mnt/spear-fr-files

6

Write data to this location, and it will be placed, encrypted, in the file.

Create a file inside and add some content:

cd /mnt/spear-fr-files
echo ‘SPEAR’ >> spear-ppf-messages

7

When finished collecting evidences unmount the device and close the LUKS file again to
encrypt the data at rest, store the checksum of the drive and cryptographically verify it.

umount /mnt/spear-fr-files
cryptsetup luksClose spear-fr-volume
find /root/spear-fr -type f -print0 | xargs -0 md5sum >> /root/spear-fr.md5
md5sum -c /root/spear-fr.md5

Input data

Login as a root user in the spear-fr server and try to access/view/edit the
directory/file

Login as another user in the spear-fr server and try to access/view/edit the
directory/file

Result

We should be able to view the directory/file contents

We should get “Permission denied” message:

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 42 from 52 2020-04-30

Test Case ID FR_10 Component SPEAR-FR

Description
For data at rest SPEAR-FR must ensure data integrity via strict file and folder
permissions.

Req ID F41 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) Encrypted and mounted drive/file where forensic data is stored (see FR_01)

Test steps

1 Connect (SSH) to the SPEAR-FR server as a non-root user

Input data Try to access/view/edit the directory/file where forensic data are located

Result

 “Permission denied” message:

Test Case Result Achieved

Test Case ID FR_11 Component SPEAR-FR

Description SPEAR-FR should ensure that access to the forensic data is controlled.

Req ID F42 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) Encrypted and unmounted drive/file where forensic data is stored

Test steps

1 Connect (SSH) to the SPEAR-FR server

Input data
Try to open the LUKS device (container):
cryptsetup luksOpen /root/spear-fr spear-fr-volume

Result User is prompted for password. Hence only authorized users can access data

Test Case Result Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 43 from 52 2020-04-30

Test Case ID FR_12 Component SPEAR-FR

Description Ensure availability of forensic data.

Req ID F43 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) LUKS device (container) where forensic data is stored, is open and mounted

Test steps

1
Setup daily backups of SPEAR-FR data locations, using a cron job
cp -rp /mnt/spear-fr/ /mnt/spear-fr-files-backup/

Input data
Store the checksum of all the files inside the backup directory into <file>.md5
find /mnt/spear-fr-files-backup/ -type f -print0 | xargs -0
md5sum >> /mnt/spear-fr-files-backup.md5

Result

Cryptographically verify the copy
md5sum -c /mnt/spear-fr-files-backup.md5

Should return
/mnt/spear-fr-files-backup/spear_ppf_access: OK

If data were modified this should return:
/mnt/spear-fr-files-backup/spear_ppf_access: FAILED

md5sum: WARNING: 1 computed checksum did NOT match

Test Case Result Achieved

Test Case ID FR_13 Component SPEAR-FR

Description Ensure availability of forensic data (alternative approach)

Req ID F43 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) Unmounted and encrypted drive/file where forensic data is stored

Test steps

1
Setup daily backups of SPEAR-FR data locations, using a cron job
cp -rp /root/spear-fr /root/spear-fr-backup

Input data
Store the checksum of the drive
find /root/spear-fr-backup -type f -print0 | xargs -0 md5sum
>> /root/spear-fr-backup.md5

Result

Cryptographically verify the copy
md5sum -c /root/spear-fr-backup.md5

Should return
/root/20200214_spear-fr-backup: OK

Test Case Result Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 44 from 52 2020-04-30

Test Case ID FR_14 Component SPEAR-FR

Description
Ensure that the restoration of the cryptographically verifiable copies of the
forensic data work as expected.

Req ID F43 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) Backup of the open, mounted drive where forensic data is stored

Test steps

1

Cryptographically verify the copy
md5sum -c /mnt/spear-fr-files-backup.md5

Should return
/mnt/spear-fr-files-backup/spear_ppf_access: OK

Input data Access data location
cd /mnt/spear-fr-files-backup

Result
Verify that all files are there
ls -la

Test Case Result Achieved

Test Case ID FR_15 Component SPEAR-FR

Description
Ensure that the restoration of the cryptographically verifiable copies of the
forensic data work as expected.

Req ID F43 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)
Backup of the closed (thus encrypted) and unmounted drive/file where
forensic data is stored

Test steps

1

Cryptographically verify the copy
md5sum -c /root/20200214_spear-fr-backup.md5

Should return
/root/20200214_spear-fr-backup: OK

2

Open the container.

NOTE: We must provide the encryption password.

cryptsetup luksOpen /root/20200214-spear-fr-backup 20200214-spear-fr-backup-
volume

The above command will open the LUKS device, and maps it to “20200214_spear-fr-backup-
volume “, by creating a file at /dev/mapper/20200214_spear-fr-backup-volume.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 45 from 52 2020-04-30

3

Logically to mount the device:

 Create mount location:
mkdir /mnt/20200214-spear-fr-files

 Mount filesystem
mount /dev/mapper/20200214-spear-fr-volume /mnt/20200214-spear-fr-
files/

Input data Access data location
cd /mnt/20200214-spear-fr-files

Result
Verify that all files are there
ls -la

Test Case Result Achieved

Test Case ID FR_16 Component SPEAR-PPF

Description
SPEAR-FR must assess: a) the purpose of the processing, b) the types of
personal data stored and d) the retention period.

Req ID F45 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)

Test steps

1
Access the DPIA tool, either though the integrated platform or directly at https://spear-
ppf.eurodyn.com/pia/#/home

Input data
Identify the data processing activities, including the purpose of the processing,
types of personal data stored, data retention periods and security measures
implemented

Result Review, validate and sign

Test Case Result Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 46 from 52 2020-04-30

Test Case ID FR_17 Component ELK Stack of SPEAR-FR

Description ELK Stack of SPEAR-FR should authenticate users.

Req ID F45 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s) ELK Stack VM of SPEAR-FR is up and running on forensic investigator machine

Test steps

1
Access the ELK Stack of SPEAR-FR (from within the ED test environment this is available at
http://spear-elk-server.eurodyn.com:5601/)

Input data Navigate to http://spear-elk-server.eurodyn.com:5601/

Result

Forensic investigator is presented with login screen

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 47 from 52 2020-04-30

Test Case ID FR_18 Component ELK Stack of SPEAR-FR

Description ELK Stack of SPEAR-FR should ingest archived NetFlow data.

Req ID F45 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)
ELK Stack VM of SPEAR-FR is up and running on forensic investigator machine.
SPEAR-FR encrypted disk/partition copy is received (spear-fr and spear-fr.md5).

Test steps

1

Place copy of the encrypted partition under root and cryptographically verifies it
md5sum -c /root/spear-fr.md5

Should return
/root/spear-fr: OK

2
Open the LUKS device (container):
cryptsetup luksOpen /root/spear-fr spear-fr-volume

3 Create and mount the file system:
mkfs.ext4 -j /dev/mapper/spear-fr-volume

4

Logically to mount the device:

 Create mount location:
mkdir /mnt/spear-fr-files

 Mount filesystem
mount /dev/mapper/spear-fr-volume /mnt/spear-fr-files/

 Give read, write permissions only to root:
chown -R root:root /mnt/spear-fr-files/
chmod -R 700 /mnt/spear-fr-files/

5

To ingest existing NetFlow evidence, parse them with the nfdump2spear-elk.sh script

nfdump2spear-elk.sh -r /mnt/spear-fr-
files/path/to/netflow/nfcapd.202002190000 -w /logstash/nfarch/inputfile_1.txt

6
Access the ELK Stack of SPEAR-FR (from within the ED test environment this is available at
http://spear-elk-server.eurodyn.com:5601/)

7 Access the “NetFlow Dashboard”

Input data Select the time period of interest

Result User is presented with the search results

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 48 from 52 2020-04-30

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 49 from 52 2020-04-30

Test Case ID FR_19 Component ELK Stack of SPEAR-FR

Description ELK Stack of SPEAR-FR should ingest archived syslog data.

Req ID F45 Priority S

Prepared by ED, REAL Tested by ED, REAL

Pre-condition(s)
ELK Stack VM of SPEAR-FR is up and running on forensic investigator machine.
SPEAR-FR encrypted disk/partition copy is received (spear-fr and spear-fr.md5).

Test steps

1

Place copy of the encrypted partition under root and cryptographically verifies it
md5sum -c /root/spear-fr.md5

Should return
/root/spear-fr: OK

2
Open the LUKS device (container):
cryptsetup luksOpen /root/spear-fr spear-fr-volume

3 Create and mount the file system:
mkfs.ext4 -j /dev/mapper/spear-fr-volume

4

Logically to mount the device:

 Create mount location:
mkdir /mnt/spear-fr-files

 Mount filesystem
mount /dev/mapper/spear-fr-volume /mnt/spear-fr-files/

 Give read, write permissions only to root:
chown -R root:root /mnt/spear-fr-files/
chmod -R 700 /mnt/spear-fr-files/

5 Copy archived syslog data into the /logstash/syslog/ directory
cp /mnt/spear-fr-files/path/to/syslog/ /logstash/syslog/

6
Access the ELK Stack of SPEAR-FR (from within the ED test environment this is available at
http://spear-elk-server.eurodyn.com:5601/)

7 Access the “NetFlow Dashboard”

Input data Select the time period of interest

Result User is presented with the search results

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 50 from 52 2020-04-30

Test Case
Result

Achieved

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 51 from 52 2020-04-30

6 Conclusions
This deliverable summarized the logging architecture, presented in D4.2, which was able to support the
smart grid network forensics process, by a) implementing an effective and secure storage for smart grid
network forensic data and b) ingesting, processing, and analysing stored smart grid network forensic data.

The development of the SPEAR Forensics Repository was based on the result of the analysis of the SPEAR
Forensics Repository requirements provided in this deliverable (Section 2).

Collection and long-term storage of forensic data (log files, flow-data, full content data and statistical data)
is handled by a dedicated and secure forensic evidence server, namely the SPEAR Forensics Repository
(SPEAR-FR). SPEAR-FR was built on top of open-source components such as cryptsetup, syslog-ng,
softflowd, nfdump and nfsen.

Regarding querying and analytics, the deliverable described how the pre-configured ELK Stack appliance
of SPEAR-FR, was incorporated into SPEAR, allowing us to ingest smart grid network forensic data stored
in the SPEAR-FR, isolate and finally analyse them, thus addressing the computational resources needed
during investigations and the time delays in processing log files. This pre-configured ELK Stack appliance
allowed forensic investigators to focus on the important aspects of any forensic task, which is to apply own
intelligence and awareness when analyzing collected security event data.

Furthermore, the deliverable explained the details of the software prototypes developed for each of the
components, i.e. the SPEAR-FR and the ELK Stack of SPEAR-FR. The prototype description included
installation and configuration details, configuration and the references to the artefact repositories.

Finally the deliverable also presented the results of the SPEAR assessment/unit tests performed over the
logging architecture components namely the SPEAR-FR and the ELK Stack of SPEAR-FR, thus showing
compliance to the requirements defined in WP2.

WP4 | D4.5 – SPEAR Smart Grid Database & Interfaces

Version: 1.1 Page 52 from 52 2020-04-30

References
[1] ARTICLE 29 DATA PROTECTION WORKING PARTY, WP 248, Guidelines on Data Protection Impact

Assessment (DPIA) and determining whether processing is “likely to result in a high risk” for the
purposes of Regulation 2016/679, 2017, https://ec.europa.eu/newsroom/document.cfm?doc_id=44137

[2] ARTICLE 29 DATA PROTECTION WORKING PARTY, WP250rev.01, Guidelines on Personal data
breach notification under Regulation 2016/679, 2018,
https://ec.europa.eu/newsroom/article29/document.cfm?doc_id=49827

[3] Network Forensics, Tracking Hackers through Cyberspace, by Sherri Davidoff and Jonathan Ham,
2012, ISBN-13: 978-0-13-256471-7

[4] Introduction to logging for security purposes, Laying the groundwork for incident readiness, UK National
Cyber Security Center, July 2018

[5] Stav, E., S. Walderhaug, and U. Johansen, ARCADE - An Open Architectural Description Framework.
December 2013, SINTEF ICT. Available at: http://www.arcade-framework.org/wp-
content/uploads/2013/12/ARCADE-Handbook.pdf

